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Attention selects behaviorally relevant stimuli for greater neural representation. In this issue of Neuron,
Luo and Maunsell (2015) show that attention acts, in part, by boosting the signal-to-noise ratio (SNR) of
sensory neurons.
We live in a complex and dynamic world

where every moment is a flood of sensory

stimuli and internal thoughts. To avoid

drowning in this deluge, we must selec-

tively prioritize those inputs or thoughts

relevant to our current task. Attention

acts as this filter: It is our ability to selec-

tively prioritize specific stimuli or thoughts

for greater neural representation. Now

in Neuron, Luo and Maunsell (2015) pro-

vide evidence that this filter is enacted

by modulating the signal-to-noise ratio

(SNR) of sensory neurons.

This control is at the center of cognition,

and so it is no surprise that attention has

been well-studied. Many studies of atten-

tion use a variant of the ‘‘Posner cueing

task’’ (Posner et al., 1980). In this task,

subjects are cued to attend to a specific

location in order to detect a change in a

stimulus. As expected, subjects are able

to allocate attention, enhancing detection

at the cued location. The Posner task has

been particularly powerful for studying

attention because, by comparing neural

responses of stimuli inside and outside

of attentional focus, one can study how

attention modulates neural response

to stimuli. Using this method, we have

gained insight into how attention changes

neural representations (for review, see

Carrasco, 2011). For example, attention

has been found to improve the response

of single neurons, either by increasing

their sensitivity (Reynolds et al., 2000) or

by boosting the gain of their response

(Lee and Maunsell, 2010). Attention also

increases the information content of pop-

ulations of neurons by reducing noisy,

uninformative, correlations between neu-

rons (Cohen and Maunsell, 2009). At the

same time, attention synchronizes the

activity of selected neural populations,

increasing their impact on downstream

regions (Fries et al., 2001). Notably, all of
these results, and many more in the field,

have relied on the Posner attention task.

Because attentional cueing in the Posner

task is assumed to selectively enhance

an attended stimulus, these changes in

neural responses are often interpreted

as increasing the SNR ratio of attended

stimuli. However, this assumption is not

always correct.

Subjects performing Posner-like tasks

actually use two different strategies to

increase the likelihood of detecting a

target: (1) decrease the threshold for

deciding a stimulus is a target and/or

(2) selectively increase a stimulus’ neural

representation, making it easier to detect

a change. This effect has been known

for several decades and is best under-

stood from a signal detection theory

perspective (for review, see Kinchla,

1992). As an example, Figure 1A

outlines a typical Posner-like attention

task where subjects must monitor the

orientation of an attended stimulus. Their

task is to determine if it changes from

the sample orientation to a target orien-

tation. Signal detection theory predicts

the estimate of a stimulus will be noisy,

leading to variability in its perceived

orientation. This is true when the stimulus

is at the sample orientation (Figure 1B,

black distribution) and at the target orien-

tation (Figure 1B, orange distribution).

Deciding whether a given stimulus has

changed from its original sample orien-

tation therefore requires one to use a

discriminating threshold: below the

threshold a stimulus will be perceived as

a non-target, having the sample orienta-

tion; above the threshold it will be

perceived as a target (Figure 1B, green

line). Given the noise in perception, there

will also be noise in detecting a change

in orientation. For example, occasionally

a non-target stimulus at the sample orien-
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tation will be misperceived as having the

target orientation. Subjects will then

incorrectly report a change (a ‘‘false

alarm,’’ shown as blue area in

Figure 1B). Similarly, a stimulus at the

target orientation may be misperceived

as having the sample orientation (a

‘‘miss,’’ shown as red area in Figure 1B).

Attentional cues clearly enhance the

probability of detecting a change in target

orientation but, as noted above, this can

be done in two ways.

First, one could improve their SNR. In

effect, this would reduce the uncertainty

of the orientation of the sample and

the target (Figure 1C, left). Reducing the

uncertainty would lead to a reduction in

both misses and false alarms. Second,

one could simply change the threshold

for detecting a target change (Figure 1C,

right). For example, decreasing the

change threshold would greatly reduce

misses (while necessarily increasing false

alarms). In this isssue, Luo and Maunsell

(2015) find that when monkeys perform

a typical Posner cueing task, they use

both strategies: they increase their SNR

and lower their threshold for detecting a

target stimulus.

This then presents a conundrum: If ani-

mals adopt a mixed strategy to solving

this attention task, then how should one

interpret neural correlates of attention?

Are they reflecting the increased SNR,

or are they reflecting a reduced change

threshold? To address this question, Luo

and Maunsell trained animals to perform

two variants of a Posner-like cueing

task that independently manipulated the

SNR and threshold. First, they biased

the monkeys to selectively increase/

decrease the SNR of the attended stimuli

by rewarding themmore/less for correctly

responding to changes at a single loca-

tion. Importantly, this can be behaviorally
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Figure 1. Attention Improves Target Detection by Increasing Signal to Noise and Changing
Detection Threshold
(A) A typical Posner attention task. Subjects are asked to attend to a stimulus in order to detect
(and respond to) a change in its properties (in this case, orientation).
(B) Neural responses to stimuli are noisy, leading to noise in perception (black and orange lines for two
different orientations). Signal detection theory predicts stimuli are discriminated into different orientations
using a decision threshold (green line). If distributions are overlapping, stimuli will occasionally be misper-
ceived (red and blue areas). This would lead to errors in a Posner-like task to detect changes.
(C) Detection rate of targets can be improved by either (left) boosting neural responses such that the two
distributions do not overlap or (right) changing the decision threshold in order ensure more target stimuli
are accurately discriminated.
(D) Attention in a Posner attention task seems to do both: increasing SNR by improving V4 responses (top)
and decreasing thresholds through a currently unknown mechanism (bottom).

Neuron

Previews
measured as a shared change in false

alarms and misses (e.g., both decrease,

as shown in Figure 1C, left). Second,

they biased the monkeys to either in-

crease or reduce their discrimination

threshold by differentially rewarding

the animals for correctly identifying

change trials (‘‘hits’’) and no-change trials

(‘‘correct rejections’’). This is measured as

opposite changes in false alarms and

misses (as shown in Figure 1C, right).

To determine whether the neural corre-

lates of attention follow changes in SNR

or threshold, Luo and Maunsell use a

chronically implanted electrode array

to simultaneously record from dozens of

V4 neurons during both task variants.

Interestingly, Luo and Maunsell find

changes in V4 neural responses only
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occurred on those trials when the mon-

keys were improving their SNR (Luo

and Maunsell, 2015; summarized in

Figure 1D). Individual V4 neurons

increased their firing rate to an attended

stimulus during the high SNR condition.

In effect, this acts to increase the SNR of

individual neurons: an increase in firing

rate to a target stimulus will separate it

from the response to a sample stimulus,

improving their discriminability. Similarly,

correlated noise in the population was

reduced only in the high SNR condition.

Such ‘‘noise correlations’’ reflect a shared

signal across a population of neurons,

which reduces the information-carrying

capacity of the population as a whole.

Therefore, by reducing these noise corre-

lations, the population has a higher SNR.
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Together, these results provide early

evidence that attention acts on sensory

representations in V4 solely to improve

the SNR. Inmanyways, this makes sense:

The best way to increase the information

one has about a stimulus is to improve

the quality of your detectors. Further-

more, Luo and Maunsell’s results are

consistent with prominent models of

attention that suggest it increases SNR

by resolving competition between stimuli

(Reynolds and Heeger, 2009). However,

it remains to be seen whether other neural

correlates of attention are also associated

with increasing SNR or if instead they act

to reduce the threshold for detecting a

target. For example, there is a large

body of evidence showing attention syn-

chronizes selected neurons at high-fre-

quency ‘gamma-band’ oscillations (e.g.,

Fries et al., 2001). Such increases in syn-

chrony ensure the activity of selected

neurons are coincident on downstream

regions, increasing their efficacy and

boosting the propagation of information.

It seems natural that these increases

in synchrony would increase the SNR

of a population by selectively boosting

the ‘‘signal’’ while removing competing

‘‘noise’’ representations. However, they

could also act to reduce the threshold if,

by becoming coincident, fewer neurons

are required to trigger downstream ‘‘deci-

sion’’ neurons. Future work is needed

to determine which model is correct (or if

both are).

Future work is also needed to deter-

mine which brain regions reflect and con-

trol changes in threshold. A distributed

network, including frontal cortex, parietal

cortex, and subcortical regions are

involved in decision making and so they

seem like a natural place to begin looking

for ‘‘threshold’’ neurons. In addition, as

these same regions are thought to control

where we attend (for review, see Miller

and Buschman, 2013), future work should

determine their relative roles in controlling

increases in SNR and/or changes in

threshold.

An intriguing alternative model comes

from Lo and Wang (2006). They hypo-

thesize that the brain adjusts decision

thresholds by modulating cortico-striatal

connections. In their model, the integra-

tion threshold of accumulator neurons

can be changed by modulating the

strength of afferent synapses: greater
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synaptic strength lowers the number of

spikes needed to reach a given level,

effectively lowering the threshold. This

model has growing experimental sup-

port. First, it is clear that cortico-stratial

projections are involved in decision

making (Znamenskiy and Zador, 2013).

Second, human neuroimaging experi-

ments have shown that the effective

connectivity between cortex and striatum

is correlated with decision-making

thresholds (Green et al., 2012). This

model is particularly intriguing given the

known role of dopamine in modulating

cortico-striatal connections and the

growing understanding of dopamine’s

role in attention (Noudoost and Moore,

2011).

Finally, Luo and Maunsell’s results

highlight the advantage of building more

complete models of behavior in order to

understand the many facets of a task

(Luo and Maunsell, 2015). In this case,
signal detection theory led to a more

complete understanding of the behavior

and, thus, a more complete understand-

ing of the neural correlates of attention.

Similarly, exhaustive behavioral models

have recently provided novel insights

into the underlying neural mechanisms

of decision making (Brunton et al., 2013).

The brain exists to produce behavior

and, therefore, understanding the brain

should begin with complete descriptions

of behavior.
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Adjustments in neural activity can drive cortical plasticity, but the underlying circuit components remain un-
clear. In this issue ofNeuron, Barnes et al. (2015) show that visual deprivation-induced homeostatic plasticity
invokes specific changes among select categories of V1 neurons.
The brain has evolved extensive mecha-

nisms to maintain stable activity levels in

the face of fluctuating synaptic drive.

Indeed, when these mechanisms fail,

devastating consequences can occur

such as runaway excitation and epilepsy.

At the same time, there are a number of

instances in which neural circuits need

to greatly increase their levels of activa-

tion, such as during sensory plasticity.
How does the brain reconcile these

seemingly contradictory needs? One

way is through homeostatic plasticity or

the ability to fine tune the excitability of

specific neuronal networks (Turrigiano,

2012). In this issue of Neuron, Barnes

et al. (2015) addressed whether homeo-

static recovery of cortical activity in

response to visual deprivation reflects

the involvement of specific subsets of
neurons and how those cells contribute

to the plasticity of the larger circuits in

which they are embedded.

Classic paradigms for manipulating

sensory drive and cortical plasticity, such

as eye-lid suture, dark rearing, or retinal le-

sions, have been shown to trigger homeo-

static regulation of firing rate in the devel-

oping (Desai et al., 2002; Hengen et al.,

2013) and in the mature (Keck et al.,
86, June 3, 2015 ª2015 Elsevier Inc. 1113
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